44. The Crystal and Molecular Structure of Dihydridodi-m-cyclopentadienylmolybdenum.

By M. Gerloch and R. Mason.

$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{2}$ crystallises in a monoclinic cell with $a=14 \cdot 30, b=5 \cdot 90$, $c=10.41 \AA, \beta=104^{\circ}$; space group $C c$ or $C 2 / c, Z=4$. Least-squares analysis of limited three-dimensional X-ray data shows the molecules to be wedge-like, the angle between the π-cyclopentadienyl rings being $34 \pm 1^{\circ}$. Evidence for asymmetry in the cyclopentadienyl ligand is presented and compared with that from related structures. The Difference Fourier syntheses are described, and the nine-co-ordinate stereochemistry of the complex discussed in relation to the theoretical model of Ballhausen and Dahl. ${ }^{1}$

Recent studies of transition-metal hydrides led to the preparation of a number of di- π-cyclopentadienyl hydrides of general formula $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MH}_{x}(x=1,2$, or 3). These molecules were originally suggested to be trigonal bipyramids in which parallel cyclopentadienyl rings occupy axial positions; if the cyclopentadienyl anions are formally considered to be terdendate ligands, the proposed structure would then be similar to that of $\mathrm{Nd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}{ }^{3+}$. The three hydrogen atoms in the trihydride species $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TaH}_{3}$ and $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{WH}_{3}{ }^{+}$are
${ }^{1}$ Ballhausen and Dahl, Acta Chem. Scand., 1961, 15, 1333.
required to occupy the equivalent equatorial positions but the high-resolution proton magnetic resonance spectra of these complexes indicate only two equivalent hydrogen atoms in an $\mathrm{A}_{2} \mathrm{~B}$ grouping. The non-equivalence of the third proton was therefore interpreted as favouring a distorted trigonal bipyramidal structure in which the metal-to-ring axes are non-linear, the structures of the dihydrido- and monohydrido-complexes being described in a similar way. ${ }^{2}$ It cannot be determined from dipole moment and infrared studies ${ }^{3}$ unequivocally whether the cyclopentadienyl rings are parallel, and the present X-ray analysis was undertaken to ascertain the relative conformation of the π-cyclopentadienyl ligands.

Crystallographic Data.-The complex was prepared, in high yields, by the reaction of the anhydrous metal chloride with a solution of sodium cyclopentadienide in tetrahydrofuran containing an excess of sodium borohydride. ${ }^{4}$ Pale yellow crystals, of acicular habit, were grown from the reaction mixture by slow sublimation in vacuo, selected crystals being sealed, under nitrogen, in a Lindemann glass capillary. Weissenberg and precession data (Mo- K_{α} radiation, $\bar{\lambda}=0.7107 \AA$) gave the monoclinic unit-cell dimensions as, $a=14.30 \pm 0.04$, $b=5 \cdot 90 \pm 0.02, c=10.41 \pm 0.03 \AA, \beta=104 \cdot 0 \pm 0 \cdot 2^{\circ}, U=852 \AA^{3}$. With four molecules per unit cell, $D_{c}=1.78$, the high reactivity of the complex preventing any accurate determination of the density of the crystals. The systematic absences $h 0 l$ for $l=2 n+1$, and $h k l$ for $h+k=2 n+\mathrm{I}$ indicate the space group as either $C 2 / c\left(C_{2 h}{ }^{6}\right)$ or $C c\left(C_{s}{ }^{4}\right)$. In $C 2 / c$, the molybdenum atom must lie in a special position, i.e., either at a centre of symmetry or on the diad axis. In the first case, reflexions with $\{k+l\}$ even should be systematically weak, and this is not observed. With the molybdenum at $0 y \frac{1}{4}$, the reflexions $\{00 l\}$ should be systematically strong; this condition is observed but does not, of course, preclude a choice of the non-centrosymmetric space group. The structure was thus initially determined on the basis of $C c$ so as to avoid any a priori assumption of the molecular symmetry but the final refinement suggests that the molecule may possess exact C_{2} symmetry.

Relative intensities of the Weissenberg $\{h 0 l\}$ and $\{h \mathbf{l} l\}$ data were estimated visually by standard methods; the $\{h k 0\}$ and $\{0 k l\}$ precession data were initially measured by a JoyceLoebl microdensitometer but, since these data appeared to contain systematic errors, these zones were later re-estimated visually. These 274 intensities have not been corrected for absorption, being derived from a crystal of 0.2 mm . average cross-section.

Determination and Refinement of Atomic Parameters.-The Patterson series $P(U V 0)$ gave the y-co-ordinate of molybdenum as 0.33 , the x - and z-co-ordinates being arbitrarily chosen as 0 in the space group $C c$. The electron-density synthesis $\rho(x y 0)$, phased by the molybdenum atom, showed peaks consistent with a cyclopentadienyl ring together with a mirror-related series of peaks generated by the symmetry of the heavy-atom phased Fourier series. This false additional symmetry was removed when the contributions of one cyclopentadienyl ring were included in the structure factor calculations, the subsequent Fourier map suggesting two possible positions for the second cyclopentadienyl ring. Of these one allowed the reliability factor $R(h k 0)$ to be reduced from 0.23 to 0.07 in three cycles of least-squares refinement of molybdenum positional and anisotropic thermal parameters and carbon co-ordinates and isotropic Debye factors. Approximate z-co-ordinates for all atoms were obtained from a model used in combination with the previously determined x - and y-parameters, these values giving $R(h 0 l)=0 \cdot 19$ and $R(0 k l)=0 \cdot 17$, respectively. Final scaling together of the three principal zones was via the calculated structure factors, least-squares refinement of the 201 two-dimensional reflexions progressing smoothly from 0.17 to 0.098 in eight cycles. The Difference density synthesis $D(x y 0)$ and $D(x 0 z)$ computed at this stage showed significant peaks near the molybdenum atom in positions where the two hydride atoms might be expected.

It was now clear that the molecule was wedge-like (Fig. I), having essentially two-fold

[^0]symmetry. A new refinement was begun, placing the molybdenum at $0 y \frac{1}{4}$, that is on a diad axis in $C 2 / c$, the least-squares analysis being based, now, on the visually estimated intensities of all 274 reflexions from the $\{h k 0\},\{h 0 l\},\{0 k l\}$, and $\{h l l\}$ zones. Successive adjustment of the positional and anisotropic thermal parameters of the crystallographically non-equivalent molybdenum and five carbon atoms slowly reduced the reliability index from 0.098 to 0.087 in five cycles, all hydrogen-atom contributions to the structure factors being included. The final atomic co-ordinates are shown in Table l, the thermal coefficients, $b_{i j}$, in Table 2, and observed and calculated structure factors in Table 3.

Fig. 1. Molecular configuration and numbering of atoms in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{2}$.

Difference density syntheses were calculated at this stage, subtracting the contributions to the structure factors of the molybdenum and cyclopentadienyl carbon and hydrogen atoms. $D(x 0 z)$ and $D(x y 0)$ again show peaks in the hydride atom positions [Figs. 2(a) and (b)], severe overlap preventing a simple interpretation of $D(0 y z)$. The peak heights of $0.3-0.6$ e \AA^{-2} are certainly close to the level of significance $(\sim 2.5 \sigma)$ but their appearance in chemically reasonable positions adds some weight to the argument for regarding them as genuine rather than as anomalous "ghost" peaks produced by the molybdenum atom.

Table 1.
Atomic co-ordinates and estimated standard deviations.

	Atom	x / a	y / b	z/c	$\begin{gathered} \sigma(\mathrm{X}) \\ \AA \end{gathered}$	$\sigma(\mathrm{Y})$	$\begin{gathered} \sigma(Z) \\ \AA \end{gathered}$
Mo(1)		0	$0 \cdot 33188$	1	-	0.0039	
C(1) ..		-0.1027	0.0610	$0 \cdot 2712$	0.020	0.025	0.029
C(2)		-0.1459	$0 \cdot 1796$	$0 \cdot 1634$	0.019	0.038	0.037
C(3)		-0.1667	$0 \cdot 4145$	0.2027	0.019	0.037	0.032
C(4)		-0.1290	$0 \cdot 4187$	$0 \cdot 3423$	0.021	0.039	0.027
C(5)		-0.0897	0.1906	$0 \cdot 3849$	0.023	0.031	0.026
H(1)		-0.080	-0.113	0.270			
$\mathrm{H}(2)$		-0.167	0.111	0.058			
$\mathrm{H}(3)$		-0.200	0.548	$0 \cdot 140$	Values not refined (obtained by calculation)		
H(4)		-0.131	0.563	0.405			
$\mathrm{H}(5)$		-0.054	$0 \cdot 140$	0.485			
H(6)*		-0.033	$0 \cdot 500$	$0 \cdot 200$			

Table 2.
Atomic Debye factors.

A further Difference synthesis $D^{\prime}(x y 0)$ was calculated using coefficients from reflexions with $\sin \theta \leqslant 0.5$, a procedure which minimises Fourier features produced predominantly by any inexact treatment of the thermal vibrations of the heavy atoms. Fig. 2(c) shows only a marginal modification of the peaks assigned to the hydride atoms while all other peaks, especially the large negative feature at (000), have been greatly diminished. The

(a)

(b)

(c)
principal reason why the hydrogens have been apparently located may be related to the very small thermal vibrations which these bonded atoms would probably execute; the marked dependence of $\rho_{\text {obs. }}$ (hydrogen) on temperature factor is well known. ${ }^{5}$

Discussion.-The first feature of chemical interest, namely, the mutual orientation of the cyclopentadienyl rings, confirms the suggestions of Green et al., ${ }^{2}$ and rules out configurations similar to those of the $\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}{ }^{3+}$ and $\left(\mathrm{TaF}_{7}\right)^{2-}$ ions. The cyclopentadienyl rings are essentially planar (r.m.s. deviation, $0.007 \AA$), the direction cosines of the normal to the mean plane of the reference ring being $-0.9486,-0.2932,0 \cdot 1190$, referred to the orthogonal axes a, b, and c^{\prime}. The angle between the π-cyclopentadienyl rings of one molecule is, therefore, $34 \cdot 1 \pm 1^{\circ}$ (a typographical error in our earlier Note ${ }^{6}$ gave the value as $\mathbf{2 5}$).

Molecular-orbital calculations on protonated sandwich compounds were reported by Ballhausen and Dahl ${ }^{1}$ who showed that the angle of tilt between the rings could not exceed

[^1]TAble 3.
Observed and calculated structure factors $(\times 50)$.

$\left\|F_{0}\right\|$	F_{c}
4019	-4: 67
5060	-4713
a336	-3589
$3 \mathrm{OB}_{3}$	-2827
± 263	-2 347
1349	-1335
854	-988
93^{8}	$\times 572$
2378	2807
6943	6104
4003	3971
2326	2405
2376	2413
1530	1603
888	94^{8}
963	988
2887	3574
2359	2510
2946	2934
2060	2235
1597	1618
1174	1357
53^{8}	714
2339	2750
1914	2094
3450	3407
1010	1146
2164	2274
1144	$\underline{5062}$
1082	-1627
2460	-3500
2419	-2594
1108	-1435
888	-1146
1144	-1858
1988	-2278
245°	-2745
3030	-3367
2431	-2479
1269	-1454
2096	-2480
590	-818
2419	-2719
3955	-3690
3575	-3313
1836	-2088
2035	-2204
1889	-1910
761	-992
664	-792
3715	3954
5502	5391
3728	4124
2622	2849
2757	2700
2326	2446
2025	2037
1597	1727
1428	1424
2704	2691
3010	2607
1756	1905
5323	1481
1038	1218
798	- 798
3010	-3142
3244	-3399
2371	-2364
1874	-1961
2326	-2699
2509	-2631
1597	-1661
854	- 1504
1144	-2105
938	-942
1292	-1284
706	-912
664	-445
1756	-1550
2040	-195
1038	-1210
1144	-1053
1544	-1275
888	-767
1108	1091
1082	1339
761	725
1080	931
1082	1823
963 798	1019 355

,

45°; within this limit, overlap between the ring molecular orbitals and metal hybrid orbitals was not reduced a great deal from the parallel ring model. With these angular bonds it followed, without recourse to f-orbitals, that, in addition to the six metal-bonding orbitals, there remained three strongly space-directed orbitals on the metal, orientated in the plane bisecting the angle between the π-cyclopentadienyl rings (Fig. 3). Two orbitals, ψ_{y} and ψ_{-y}, are equivalent ($s p d_{x^{2}-y^{2}}, d_{z^{2}}$ hybrids) and different from the third ψ_{0} (an $s p$-hybrid); together with the six bonding orbitals directed at the rings these make up a new form of nine-co-ordination (see also ref. 7). In the dihydride species, the non-bonding pairs of electrons occupy ψ_{0}, a configuration which is more stable than that of the $\left(\mathrm{TaF}_{7}\right)^{2-}$ ion. It is, however, difficult to understand why the trihydrides as well as the dihydrides have

Fig. 3. The disposition of the cyclopentadienyl rings and available metal orbitals (after Ballhausen and Dahl, 1961).

this asymmetric geometry; it may be that the $\left[\mathrm{Nd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]^{3+}$ ion finds the Ballhausen-Dahl geometry unfavourable because of the greater steric effects between the $\mathrm{H}_{2} \mathrm{O}$ ligands compared with those between the hydride atoms and thus adopts what might otherwise be the more unstable, symmetrical structure.

Table 4.
(a) Bond lengths and estimated standard deviations (e.s.d.).

Bond$\mathrm{Mo}-\mathrm{C}(1)$	Length (\AA)	e.s.d. (\AA)	Bond		Length (\AA)	e.s.d. (\AA)
	$2 \cdot 22$	0.021	$\mathrm{C}(1)-\mathrm{C}(2)$		1-34	0.041
Mo-C(2)	$2 \cdot 25$	$0 \cdot 022$	$\mathrm{C}(2)-\mathrm{C}(3)$	1.51	0.052
$\mathrm{Mo}-\mathrm{C}(3)$	$2 \cdot 37$	0.022	$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 42$	0.042
$\mathrm{Mo}-\mathrm{C}(4)$	$2 \cdot 34$	0.023	$\mathrm{C}(4)-\mathrm{C}(5)$		$1 \cdot 49$	$0 \cdot 050$
$\mathrm{Mo}-\mathrm{C}(5)$	$2 \cdot 28$	0.024	$\mathrm{C}(5)-\mathrm{C}(1)$		1.39	0.037

(b) Bond angles and estimated standard deviations (e.s.d.).

Bonds	Angle	e.s.d.	Bonds	Angle	e.s.d.
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(2) \ldots \ldots$	$34 \cdot 8^{\circ}$	$1 \cdot \cdot^{\circ}$	$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2) \ldots$	$111 \cdot 9^{\circ}$	$2 \cdot 7^{\circ}$
$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(3) \ldots \ldots$	$38 \cdot 1$	1.3	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) \ldots$	$109 \cdot 3$	$2 \cdot 5$
$\mathrm{C}(3)-\mathrm{Mo}-\mathrm{C}(4) \ldots \ldots$	$35 \cdot 1$	$1 \cdot 1$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4) \ldots$	$104 \cdot 3$	$2 \cdot 7$
$\mathrm{C}(4)-\mathrm{Mo}-\mathrm{C}(5) \ldots \ldots$	$37 \cdot 8$	$1 \cdot 2$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) \ldots$	$108 \cdot 1$	$2 \cdot 5$
$\mathrm{C}(5)-\mathrm{Mo}-\mathrm{C}(1) \ldots .$.	$35 \cdot 9$	$1 \cdot 0$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1) \ldots$	$106 \cdot 4$	$2 \cdot 5$

The nature of the molybdenum-cyclopentadienyl bonding can be understood, now, in greater detail in the light of the results of the present analysis. Bond lengths and angles, together with their e.s.d.'s are in Table 4 and some are shown in Fig. 4. The lack of fivefold symmetry in the cyclopentadienyl ring, demonstrated by the carbon-carbon bond lengths, follows a pattern of distortion reported first in 2,3-bis(methoxycarbonyl)norborna$2 \pi, 5$-dien-7-yl- π-cyclopentadienylnickel ${ }^{8}$ and, subsequently, in tricarbonylcyclopentadienylethylmolybdenum, ${ }^{7} \pi$-cyclopentadienylhexakis(trifluoromethyl)benzenerhodium, ${ }^{9}$ and π-cyclopentadienyltetrakis(trifluoromethyl)cyclopentadienonecobalt. ${ }^{10}$ The localization of electron density in the cyclopentadienyl ring can again be interpreted qualitatively within the framework of molecular-orbital theory. Any removal of the degeneracy of the metal " d "-orbitals resulting from the lack of cylindrical symmetry around the metal ion can

[^2]stabilize some of the cyclopentadienyl molecular orbitals. Elsewhere ${ }^{11}$ we have discussed a metal-cyclopentadienyl bonding scheme for this and all the above compounds in such terms, describing the ring formally as in Fig. 5, in which the cyclopentadienyl $e_{1}{ }^{-}$and $e_{1}{ }^{+}$ molecular orbitals donate unequally to the metal $d_{x z}{ }^{-}$and $d_{y z}$-orbitals with a concomitant loss of five-fold symmetry in the ligand. While the differences between the carbon-carbon bond lengths in the present complex are on the borderline of statistical significance ($\sim 3 \sigma$) the overall pattern of distortions and the large angle $C(2)-C(1)-C(5)$ suggest the value of this description. The differences between the molybdenum-carbon bond lengths are certainly significant ($5-6 \sigma$), having the regular pattern around the ring shown in Fig. 4,

Fig. 4. $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{2}$. Dimensions in the cyclopentadienyl ring; molybdenum carbon bond lengths in parentheses.

Fig. 5. Electron localization in the cyclopentadienyl ligand.
and are again consistent with the observation that the " allyl " group of the cyclopentadienyl ring is trans to the relatively strong field ligands on the opposite side of the molecule in all the above complexes.

The nature of the metal-hydrogen bonding in transition-metal hydrides has been discussed by a number of authors. Several ${ }^{12,13}$ assumed that the characteristic high-field lines in the high resolution n.m.r. spectrum of these complexes can be explained by a model involving the embedding of the hydride atoms in the electron density of the metal ion. Bishop et al. ${ }^{13}$ studied the wide-line n.m.r. spectrum of $\mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ and found a proton-proton distance of $1 \cdot 88 \pm 0.05 \AA$ from which a most probable $\mathrm{Fe}-\mathrm{H}$ distance of $1 \cdot 1 \AA$ can be calculated assuming a value of 110° for the $\mathrm{H}-\mathrm{Fe}-\mathrm{H}$ bond angle. Stevens, Kern, and Lipscomb ${ }^{14}$ considered that this simple view of an embedded proton involves a " drastic assumption" and attempt an explanation of the anomalous magnetic resonance shift, without invoking a particularly short metal-hydrogen bond, by suggesting that, when the large diffuse $4 s$ - and $4 p$-levels of, say, CO are occupied by donation from such ligands as carbon monoxide, the proton can be sufficiently shielded so as to achieve the observed shift to high field, even when the $\mathrm{M}-\mathrm{H}$ distance is a normal covalent bond length of $1 \cdot 4-1 \cdot 6 \AA$. Some support for these calculations has been provided by the recent report of a $\mathrm{Rh}-\mathrm{H}$ distance of $1.7 \AA .^{15}$ The present $\mathrm{Mo}-\mathrm{H}$ distance, estimated from the Difference syntheses, is $1 \cdot 2 \AA$. The agreement of this value with the n.m.r. data on $\mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ must be nothing more than fortuitous, both from the standpoint of the large error in the present result (e.s.d. $\sim 0.3 \AA$) and because there is no a priori justification for believing that the proton will coincide with the centroid of the electron density of the bonded hydrogen atom. A complete three-dimensional analysis would, of course, have improved the estimated standard deviations of the observed bond lengths but we think

[^3]

(b)

Fig. 6. Molecular packing projections for $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{2}$.
(a) down c,
(b) down a,
(c) down b.

that the problem is more amenable to an accurate neutron-diffraction analysis, and this is now being carried out. ${ }^{16}$

The packing of the molecules in the crystal is illustrated by the three principal crystal projections (Fig. 6). The wedge-like shape of the molecule allows a dove-tailing together

Table 5.
Inter-ring $\mathrm{H}-\mathrm{H}$ contacts less than $3 \cdot 0 \AA$.

	Contact	A		Contact	A
1	$\mathrm{H}(\mathrm{l})-\mathrm{H}\left(\mathrm{l}^{\prime}\right)$	$2 \cdot 42$	6	$\mathrm{H}(2)-\mathrm{H}(3)\left(-\frac{1}{2}-x, \frac{1}{2}-y,-z\right)$	$2 \cdot 62$
2	$-\mathrm{H}(3)(x,-1+y, z)$	$2 \cdot 77$	7	$-\mathrm{H}(4)\left(x, 1-y,-\frac{1}{2}+z\right)$	$2 \cdot 63$
3	$-\mathrm{H}(4)(x,-1+y, z)$	2.58	8	$-\mathrm{H}(5)\left(x,-y,-\frac{1}{2}+z\right)$	$2 \cdot 45$
4	$-\mathrm{H}(5)(-x,-y, 1-z)$	$2 \cdot 80$	9	$\mathrm{H}(3)-\mathrm{H}(4)\left(x, 1-y,-\frac{1}{2}+z\right)$	2.93
5	$\mathrm{H}(2)-\mathrm{H}(2)\left(-\frac{1}{2}-x, \frac{1}{2}-y,-z\right)$	$2 \cdot 90$	10	$\mathrm{H}(5)-\mathrm{H}(5)(-x,-y, 1-z)$	$2 \cdot 23$

The primed symbol refers to the second cyclopentadienyl ring in the reference molecules, related to the first by the diad at $z=\frac{1}{4}$.
in the lattice thus forming close packed chains parallel to b. These chains are quite well separated [Figs. 6(b) and (c)] (cf. the relatively few short intermolecular contacts of Table 5), the high volatility of the crystals presumably resulting from this mode of packing.

We are grateful to the D.S.I.R. for a Research Studentship (M. G.), and to Mr. O. S. Mills and Drs. J. S. Rollett and R. A. Sparks for copies of their programs for the Ferranti Mercury computer.
(M. G.) Inorganic Chemistry Research Laboratories, Imperial College, London S.W.7.
(R. M.) Department of Chemistry, The University, Sheffield 10.
[Received, March 16th, 1964.]
16 Brown, 1963, personal communication.

[^0]: ${ }^{2}$ Green, McCleverty, Pratt, and Wilkinson, $I ., 1961,4854$.
 ${ }^{3}$ Fritz, Hristidu, Hummel, and Schneider, Z. Naturforsch., 1959, 15b, 419.
 ${ }^{4}$ Green, Pratt, and Wilkinson, $J ., 1958,3916$.

[^1]: ${ }^{5}$ McDonald, Acta Cryst., 1956, 9, 162.
 ${ }^{6}$ Bennett, Gerloch, MçCleverty, and Mason, Proc. Chem. Soc., 1962, 357.

[^2]: 7 Bennett and Mason, Proc. Chem. Soc., 1963, 273.
 ${ }^{8}$ Dahl and Wei, Inovg. Chem., 1963, 2, 713.
 ${ }^{9}$ Churchill and Mason, Proc. Chem. Soc., 1963, 365.
 ${ }^{10}$ Gerloch and Mason, Proc. Roy. Soc., 1964, A, 279, 170.

[^3]: ${ }_{11}$ Bennett, Churchill, Gerloch, and Mason, Nature, 1964, 201, 1318.
 12 Cotton, J. Amer. Chem. Soc., 1958, 80, 4425.
 13 Bishop, Down, Emtage, Richards, and Wilkinson, J., 1959, 2484.
 ${ }^{14}$ Stevens, Kern, and Lipscomb, J. Chem. Phys., 1962, 37, 279.
 ${ }^{15}$ Ibers and Ja Placa, J. Amer. Chem. Soc., 1963, 85, 3501.

